|
|
Line 15: |
Line 15: |
| |style="background:#ffffff"| | | |style="background:#ffffff"| |
| <h3><font>Publications</font> ('''*'''corresponding author)</h3> '''[http://scholar.google.com/citations?user=uQBb60kAAAAJ Google Scholar citations]''' | | <h3><font>Publications</font> ('''*'''corresponding author)</h3> '''[http://scholar.google.com/citations?user=uQBb60kAAAAJ Google Scholar citations]''' |
− | #'''Dornfeld C.''', Weisberg A.J., Ritesh KC, Dudareva N., Jelesko J.G., '''Maeda H.A.*''' (2014) Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway [http://www.plantcell.org/cgi/content/short/tpc.114.127407?keytype=ref&ijkey=2lzNDpqqYQx7ciD '''''Plant Cell''''' tpc.114.127407]
| + | |
− | #Luby C., '''Maeda H.A.''', Goldman I. (2014) Genetic and Phenological Variation of Tocochromanol (Vitamin E) Content in Wild (''Daucus carota'' L. var. ''carota'') and Domesticated Carrot (''D. carota'' L. var. ''sativa'') [http://www.nature.com/articles/hortres201415 '''''Horticulture Research''''' 1:15] | + | <ol> |
− | #'''Maeda H.''', Song W., Sage T.L., DellaPenna D. (2014) Role of Callose Synthases in Transfer Cell Wall Development in Tocopherol Deficient Arabidopsis Mutants. [http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00046/abstract '''''Front. Plant Sci.''''' 5:46.]
| + | <li>'''Dornfeld C.''', Weisberg A.J., Ritesh KC, Dudareva N., Jelesko J.G., '''Maeda H.A.*''' (2014) Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway [http://www.plantcell.org/cgi/content/short/tpc.114.127407?keytype=ref&ijkey=2lzNDpqqYQx7ciD '''''Plant Cell''''' tpc.114.127407]</li> |
− | #Yoo H., Widhalma J.R., Qiana Y., '''Maeda H.''', Cooperc B.R., Jannaschc A.S., Gondae I., Lewinsohne E., Rhodes D., Dudareva D. (2013) An Alternative Pathway Contributes to Phenylalanine Biosynthesis in Plants via a Cytosolic Tyrosine:Phenylpyruvate Aminotransferase. [http://www.nature.com/ncomms/2013/131125/ncomms3833/full/ncomms3833.html '''''Nature Commun.''''' 4:2833]
| + | :<font color="#404040"> ''Plants use phenylalanine to produce abundant and diverse phenylpropanoid compounds, such as flavonoids, tannins, and lignin. Through phylogenetic, bioinformatic, and biochemical analyses of prephenate aminotransferase enzymes from plant and bacterial lineages, this study revealed unique evolutionary history and molecular changes of key enzymes responsible for phenylalanine biosynthesis in plants. The findings assist the rational design of antimicrobial drugs and herbicides, but also highlight the use of phylobiochemical characterization of enzymes from deep taxonomic lineages in determining key molecular changes that lead to the evolution of new metabolic pathways.'' </font> [http://www.news.wisc.edu/23041 UW news release]. |
− | #'''Maeda H.''' and Dudareva N. (2012) The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. [http://www.annualreviews.org/doi/abs/10.1146/annurev-arplant-042811-105439 '''''Ann. Rev. Plant Biol.''''' Vol. 63, 73-105]
| + | <li>Luby C., '''Maeda H.A.''', Goldman I. (2014) Genetic and Phenological Variation of Tocochromanol (Vitamin E) Content in Wild (''Daucus carota'' L. var. ''carota'') and Domesticated Carrot (''D. carota'' L. var. ''sativa'') [http://www.nature.com/articles/hortres201415 '''''Horticulture Research''''' 1:15]</li> |
− | # Muhlemann J.K., '''Maeda H.''', Chang C.Y., San Miguel P., Baxter I., Cooper B., Perera M.A., Nikolau B.J., Vitek O., Morgan J.A., Dudareva N. (2012) Developmental Changes in the Metabolic Network of Snapdragon Flowers. [http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0040381 '''''PLoS ONE''''' 7(7): e40381]
| + | <li>'''Maeda H.''', Song W., Sage T.L., DellaPenna D. (2014) Role of Callose Synthases in Transfer Cell Wall Development in Tocopherol Deficient Arabidopsis Mutants. [http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00046/abstract '''''Front. Plant Sci.''''' 5:46.] </li> |
− | # '''Maeda H.''', Yoo H., and Dudareva N. (2011) Prephenate Aminotransferase Directs Plant Phenylalanine Biosynthesis via Arogenate. [http://www.nature.com/nchembio/journal/vaop/ncurrent/abs/nchembio.485.html '''''Nature Chem. Biol.''''', DOI:10.1038/nchembio.485]
| + | <li>Yoo H., Widhalma J.R., Qiana Y., '''Maeda H.''', Cooperc B.R., Jannaschc A.S., Gondae I., Lewinsohne E., Rhodes D., Dudareva D. (2013) An Alternative Pathway Contributes to Phenylalanine Biosynthesis in Plants via a Cytosolic Tyrosine:Phenylpyruvate Aminotransferase. [http://www.nature.com/ncomms/2013/131125/ncomms3833/full/ncomms3833.html '''''Nature Commun.''''' 4:2833]</li> |
− | # '''Maeda H.''', Shasany A.K., Schnepp J., Orlova1 I., Taguchi G., Cooper B.R., Rhodes D., Pichersky E. and Dudareva N. (2010) RNAi Suppression of Arogenate Dehydratase1 Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals. [http://www.plantcell.org/cgi/content/abstract/22/3/832 '''''Plant Cell''''' 22, 832-849] *Described as a Research Highlight in [http://www.nature.com/nchembio/journal/v6/n5/full/nchembio.361.html '''''Nature Chem. Biol.''''' 6, 310]
| + | <li>'''Maeda H.''' and Dudareva N. (2012) The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. [http://www.annualreviews.org/doi/abs/10.1146/annurev-arplant-042811-105439 '''''Ann. Rev. Plant Biol.''''' Vol. 63, 73-105]</li> |
− | # Song W., '''Maeda H.''', and DellaPenna D. (2010) Mutations of the ER to plastid lipid transporters (TGD1, 2, 3 and 4) and the ER oleate desaturase (FAD2) suppress the low temperature-induced phenotype of Arabidopsis tocopherol deficient mutant vte2. [http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04212.x/abstract '''''Plant J.''''' 62, 1004-1018]
| + | <li>Muhlemann J.K., '''Maeda H.''', Chang C.Y., San Miguel P., Baxter I., Cooper B., Perera M.A., Nikolau B.J., Vitek O., Morgan J.A., Dudareva N. (2012) Developmental Changes in the Metabolic Network of Snapdragon Flowers. [http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0040381 '''''PLoS ONE''''' 7(7): e40381]</li> |
− | # Orlova I., Nagegowda D.A., Kish C.M., Gutensohn M., '''Maeda H.''', Varbanova M., Fridman E., Yamaguchi S., Hanada A., Kamiya Y., Krichevsky A., Citovsky V., Pichersky E., and Dudareva N. (2009) The Small Subunit Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta. [http://www.plantcell.org/cgi/content/abstract/21/12/4002 '''''Plant Cell''''' 21, 4002-4017]
| + | <li>'''Maeda H.''', Yoo H., and Dudareva N. (2011) Prephenate Aminotransferase Directs Plant Phenylalanine Biosynthesis via Arogenate. [http://www.nature.com/nchembio/journal/vaop/ncurrent/abs/nchembio.485.html '''''Nature Chem. Biol.''''', DOI:10.1038/nchembio.485]</li> |
− | # '''Maeda H.''', Sage T.L., Isaac G.., Welti R., and DellaPenna D. (2008) Tocopherols Modulate Extra-Plastidic Polyunsaturated Fatty Acid Metabolism in Arabidopsis at Low Temperature. [http://www.plantcell.org/cgi/content/abstract/20/2/452 '''''Plant Cell''''' 20, 452-470] *Described in the Featured Article of the issue [http://www.plantcell.org/cgi/content/full/20/2/246 '''''Plant Cell''''' 20, 246]
| + | <li>'''Maeda H.''', Shasany A.K., Schnepp J., Orlova1 I., Taguchi G., Cooper B.R., Rhodes D., Pichersky E. and Dudareva N. (2010) RNAi Suppression of Arogenate Dehydratase1 Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals. [http://www.plantcell.org/cgi/content/abstract/22/3/832 '''''Plant Cell''''' 22, 832-849] *Described as a Research Highlight in [http://www.nature.com/nchembio/journal/v6/n5/full/nchembio.361.html '''''Nature Chem. Biol.''''' 6, 310]</li> |
− | # '''Maeda H.''' and DellaPenna D. (2007) Tocopherol Functions in Photosynthetic Organisms. [http://www.ncbi.nlm.nih.gov/pubmed/17434792 '''''Curr. Opin. Plant Biol.''''' 10, 260-265]
| + | <li>Song W., '''Maeda H.''', and DellaPenna D. (2010) Mutations of the ER to plastid lipid transporters (TGD1, 2, 3 and 4) and the ER oleate desaturase (FAD2) suppress the low temperature-induced phenotype of Arabidopsis tocopherol deficient mutant vte2. [http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2010.04212.x/abstract '''''Plant J.''''' 62, 1004-1018]</li> |
− | # '''Maeda H.''', Song W., Sage T.L. and DellaPenna D. (2007) Tocopherols Play a Limited Role in Photoprotection but a Crucial Role in Chilling Adaptation in Arabidopsis Leaves. In Current Advances in the Biochemistry and Cell Biology of Plant Lipids, C. Benning and J. Ohlrogge, eds (Aardvark Global Publishing Company, LLC, Salt Lake City, UT), pp. 112-115 [http://www.ispl2006.msu.edu/Proceedings_Book.pdf PDF download (4.5 MB)]
| + | <li>Orlova I., Nagegowda D.A., Kish C.M., Gutensohn M., '''Maeda H.''', Varbanova M., Fridman E., Yamaguchi S., Hanada A., Kamiya Y., Krichevsky A., Citovsky V., Pichersky E., and Dudareva N. (2009) The Small Subunit Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta. [http://www.plantcell.org/cgi/content/abstract/21/12/4002 '''''Plant Cell''''' 21, 4002-4017]</li> |
− | # '''Maeda H.''', Song W., Sage T.L. and DellaPenna D. (2006) Tocopherols Play a Crucial Role in Low Temperature Adaptation and Phloem Loading in Arabidopsis. [http://www.plantcell.org/cgi/content/short/18/10/2710 '''''Plant Cell''''' 18, 2710-2732] *Highlighted on the [http://www.plantcell.org/content/vol18/issue10/cover.dtl Cover] of the issue.
| + | <li>'''Maeda H.''', Sage T.L., Isaac G.., Welti R., and DellaPenna D. (2008) Tocopherols Modulate Extra-Plastidic Polyunsaturated Fatty Acid Metabolism in Arabidopsis at Low Temperature. [http://www.plantcell.org/cgi/content/abstract/20/2/452 '''''Plant Cell''''' 20, 452-470] *Described in the Featured Article of the issue [http://www.plantcell.org/cgi/content/full/20/2/246 '''''Plant Cell''''' 20, 246]</li> |
− | # Sakuragi Y., '''Maeda H.''', DellaPenna D. and Bryant D.A. (2006) α-Tocopherol Plays a Role in Photosynthesis and Macronutrient Homeostasis of the Cyanobacterium Synechocystis sp. PCC 6803 That is Independent of its Antioxidant Function. [http://www.plantphysiol.org/cgi/content/abstract/141/2/508 '''''Plant Physiol.''''' 141, 508-521]
| + | <li>'''Maeda H.''' and DellaPenna D. (2007) Tocopherol Functions in Photosynthetic Organisms. [http://www.ncbi.nlm.nih.gov/pubmed/17434792 '''''Curr. Opin. Plant Biol.''''' 10, 260-265]</li> |
− | # '''Maeda H.''', Sakuragi Y., Bryant D.A., and DellaPenna D. (2005) Tocopherols Protect Synechocystis sp. Strain PCC 6803 from Lipid Peroxidation. [http://www.plantphysiol.org/cgi/content/abstract/138/3/1422 '''''Plant Physiol.''''' 138, 1422-1435]
| + | <li>'''Maeda H.''', Song W., Sage T.L. and DellaPenna D. (2007) Tocopherols Play a Limited Role in Photoprotection but a Crucial Role in Chilling Adaptation in Arabidopsis Leaves. In Current Advances in the Biochemistry and Cell Biology of Plant Lipids, C. Benning and J. Ohlrogge, eds (Aardvark Global Publishing Company, LLC, Salt Lake City, UT), pp. 112-115 [http://www.ispl2006.msu.edu/Proceedings_Book.pdf PDF download (4.5 MB)] </li> |
− | # Cheng Z., Sattler S., '''Maeda H.''', Sakuragi Y., Bryant D.A., and DellaPenna D. (2003) Highly Divergent Methyltransferases Catalyze a Conserved Reaction in Tocopherol and Plastoquinone Synthesis in Cyanobacteria and Photosynthetic Eukaryotes. [http://www.plantcell.org/cgi/content/abstract/15/10/2343 '''''Plant Cell''''' 15, 2343-2356]
| + | <li>'''Maeda H.''', Song W., Sage T.L. and DellaPenna D. (2006) Tocopherols Play a Crucial Role in Low Temperature Adaptation and Phloem Loading in Arabidopsis. [http://www.plantcell.org/cgi/content/short/18/10/2710 '''''Plant Cell''''' 18, 2710-2732] *Highlighted on the [http://www.plantcell.org/content/vol18/issue10/cover.dtl Cover] of the issue.</li> |
− | # Okazawa A., '''Maeda H.''', Fukusaki E., Katakura Y., and Kobayashi A. (2000) In Vitro Selection of Hematoporphyrin Binding DNA Aptamers. [http://www.ncbi.nlm.nih.gov/pubmed/11128644 '''''Bioorg. Med. Chem. Lett.''''' 10, 2653-2656]
| + | <li>Sakuragi Y., '''Maeda H.''', DellaPenna D. and Bryant D.A. (2006) α-Tocopherol Plays a Role in Photosynthesis and Macronutrient Homeostasis of the Cyanobacterium Synechocystis sp. PCC 6803 That is Independent of its Antioxidant Function. [http://www.plantphysiol.org/cgi/content/abstract/141/2/508 '''''Plant Physiol.''''' 141, 508-521]</li> |
− | # Fukusaki E., Kato T., '''Maeda H.''', Kawazoe N., Ito Y., Okazawa A., Kajiyama S. and Kobayashi A. (2000) DNA Aptamers that Bind to Chitin. [http://www.ncbi.nlm.nih.gov/pubmed/10743940 '''''Bioorg. Med. Chem. Lett.''''' 10, 423-425]
| + | <li>'''Maeda H.''', Sakuragi Y., Bryant D.A., and DellaPenna D. (2005) Tocopherols Protect Synechocystis sp. Strain PCC 6803 from Lipid Peroxidation. [http://www.plantphysiol.org/cgi/content/abstract/138/3/1422 '''''Plant Physiol.''''' 138, 1422-1435]</li> |
| + | <li>Cheng Z., Sattler S., '''Maeda H.''', Sakuragi Y., Bryant D.A., and DellaPenna D. (2003) Highly Divergent Methyltransferases Catalyze a Conserved Reaction in Tocopherol and Plastoquinone Synthesis in Cyanobacteria and Photosynthetic Eukaryotes. [http://www.plantcell.org/cgi/content/abstract/15/10/2343 '''''Plant Cell''''' 15, 2343-2356]</li> |
| + | <li>Okazawa A., '''Maeda H.''', Fukusaki E., Katakura Y., and Kobayashi A. (2000) In Vitro Selection of Hematoporphyrin Binding DNA Aptamers. [http://www.ncbi.nlm.nih.gov/pubmed/11128644 '''''Bioorg. Med. Chem. Lett.''''' 10, 2653-2656]</li> |
| + | <li>Fukusaki E., Kato T., '''Maeda H.''', Kawazoe N., Ito Y., Okazawa A., Kajiyama S. and Kobayashi A. (2000) DNA Aptamers that Bind to Chitin. [http://www.ncbi.nlm.nih.gov/pubmed/10743940 '''''Bioorg. Med. Chem. Lett.''''' 10, 423-425]</li> |
| + | </ol> |
Publications (*corresponding author) Google Scholar citations
- Dornfeld C., Weisberg A.J., Ritesh KC, Dudareva N., Jelesko J.G., Maeda H.A.* (2014) Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway Plant Cell tpc.114.127407
- Plants use phenylalanine to produce abundant and diverse phenylpropanoid compounds, such as flavonoids, tannins, and lignin. Through phylogenetic, bioinformatic, and biochemical analyses of prephenate aminotransferase enzymes from plant and bacterial lineages, this study revealed unique evolutionary history and molecular changes of key enzymes responsible for phenylalanine biosynthesis in plants. The findings assist the rational design of antimicrobial drugs and herbicides, but also highlight the use of phylobiochemical characterization of enzymes from deep taxonomic lineages in determining key molecular changes that lead to the evolution of new metabolic pathways. UW news release.
- Luby C., Maeda H.A., Goldman I. (2014) Genetic and Phenological Variation of Tocochromanol (Vitamin E) Content in Wild (Daucus carota L. var. carota) and Domesticated Carrot (D. carota L. var. sativa) Horticulture Research 1:15
- Maeda H., Song W., Sage T.L., DellaPenna D. (2014) Role of Callose Synthases in Transfer Cell Wall Development in Tocopherol Deficient Arabidopsis Mutants. Front. Plant Sci. 5:46.
- Yoo H., Widhalma J.R., Qiana Y., Maeda H., Cooperc B.R., Jannaschc A.S., Gondae I., Lewinsohne E., Rhodes D., Dudareva D. (2013) An Alternative Pathway Contributes to Phenylalanine Biosynthesis in Plants via a Cytosolic Tyrosine:Phenylpyruvate Aminotransferase. Nature Commun. 4:2833
- Maeda H. and Dudareva N. (2012) The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Ann. Rev. Plant Biol. Vol. 63, 73-105
- Muhlemann J.K., Maeda H., Chang C.Y., San Miguel P., Baxter I., Cooper B., Perera M.A., Nikolau B.J., Vitek O., Morgan J.A., Dudareva N. (2012) Developmental Changes in the Metabolic Network of Snapdragon Flowers. PLoS ONE 7(7): e40381
- Maeda H., Yoo H., and Dudareva N. (2011) Prephenate Aminotransferase Directs Plant Phenylalanine Biosynthesis via Arogenate. Nature Chem. Biol., DOI:10.1038/nchembio.485
- Maeda H., Shasany A.K., Schnepp J., Orlova1 I., Taguchi G., Cooper B.R., Rhodes D., Pichersky E. and Dudareva N. (2010) RNAi Suppression of Arogenate Dehydratase1 Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals. Plant Cell 22, 832-849 *Described as a Research Highlight in Nature Chem. Biol. 6, 310
- Song W., Maeda H., and DellaPenna D. (2010) Mutations of the ER to plastid lipid transporters (TGD1, 2, 3 and 4) and the ER oleate desaturase (FAD2) suppress the low temperature-induced phenotype of Arabidopsis tocopherol deficient mutant vte2. Plant J. 62, 1004-1018
- Orlova I., Nagegowda D.A., Kish C.M., Gutensohn M., Maeda H., Varbanova M., Fridman E., Yamaguchi S., Hanada A., Kamiya Y., Krichevsky A., Citovsky V., Pichersky E., and Dudareva N. (2009) The Small Subunit Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta. Plant Cell 21, 4002-4017
- Maeda H., Sage T.L., Isaac G.., Welti R., and DellaPenna D. (2008) Tocopherols Modulate Extra-Plastidic Polyunsaturated Fatty Acid Metabolism in Arabidopsis at Low Temperature. Plant Cell 20, 452-470 *Described in the Featured Article of the issue Plant Cell 20, 246
- Maeda H. and DellaPenna D. (2007) Tocopherol Functions in Photosynthetic Organisms. Curr. Opin. Plant Biol. 10, 260-265
- Maeda H., Song W., Sage T.L. and DellaPenna D. (2007) Tocopherols Play a Limited Role in Photoprotection but a Crucial Role in Chilling Adaptation in Arabidopsis Leaves. In Current Advances in the Biochemistry and Cell Biology of Plant Lipids, C. Benning and J. Ohlrogge, eds (Aardvark Global Publishing Company, LLC, Salt Lake City, UT), pp. 112-115 PDF download (4.5 MB)
- Maeda H., Song W., Sage T.L. and DellaPenna D. (2006) Tocopherols Play a Crucial Role in Low Temperature Adaptation and Phloem Loading in Arabidopsis. Plant Cell 18, 2710-2732 *Highlighted on the Cover of the issue.
- Sakuragi Y., Maeda H., DellaPenna D. and Bryant D.A. (2006) α-Tocopherol Plays a Role in Photosynthesis and Macronutrient Homeostasis of the Cyanobacterium Synechocystis sp. PCC 6803 That is Independent of its Antioxidant Function. Plant Physiol. 141, 508-521
- Maeda H., Sakuragi Y., Bryant D.A., and DellaPenna D. (2005) Tocopherols Protect Synechocystis sp. Strain PCC 6803 from Lipid Peroxidation. Plant Physiol. 138, 1422-1435
- Cheng Z., Sattler S., Maeda H., Sakuragi Y., Bryant D.A., and DellaPenna D. (2003) Highly Divergent Methyltransferases Catalyze a Conserved Reaction in Tocopherol and Plastoquinone Synthesis in Cyanobacteria and Photosynthetic Eukaryotes. Plant Cell 15, 2343-2356
- Okazawa A., Maeda H., Fukusaki E., Katakura Y., and Kobayashi A. (2000) In Vitro Selection of Hematoporphyrin Binding DNA Aptamers. Bioorg. Med. Chem. Lett. 10, 2653-2656
- Fukusaki E., Kato T., Maeda H., Kawazoe N., Ito Y., Okazawa A., Kajiyama S. and Kobayashi A. (2000) DNA Aptamers that Bind to Chitin. Bioorg. Med. Chem. Lett. 10, 423-425
|